Search results
Results from the WOW.Com Content Network
A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...
The current–voltage characteristics of four devices: a resistor with large resistance, a resistor with small resistance, a P–N junction diode, and a battery with nonzero internal resistance. The horizontal axis represents the voltage drop, the vertical axis the current.
p–n junctions represent the simplest case of a semiconductor electronic device; a p-n junction by itself, when connected on both sides to a circuit, is a diode. More complex circuit components can be created by further combinations of p-type and n-type semiconductors; for example, the bipolar junction transistor (BJT) is a semiconductor in ...
At the junction of two different semiconductors there is a sharp shift in band energies from one material to the other; the band alignment at the junction (e.g., the difference in conduction band energies) is fixed. At the junction of a semiconductor and metal, the bands of the semiconductor are pinned to the metal's Fermi level.
Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes .
This allows the diode to operate at higher signal frequencies, at the expense of a higher forward voltage drop. Gold-doped diodes are faster than other p–n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p–n diodes). [43] [44] A typical example is the 1N914.
The rectifying metal–semiconductor junction forms a Schottky barrier, making a device known as a Schottky diode, while the non-rectifying junction is called an ohmic contact. [1] (In contrast, a rectifying semiconductor–semiconductor junction, the most common semiconductor device today, is known as a p–n junction.)
The p–n junction in any direct band gap material emits light when electric current flows through it. This is electroluminescence. Electrons cross from the n-region and recombine with the holes existing in the p-region. Free electrons are in the conduction band of energy levels, while holes are in the valence energy band. Thus the energy level ...