Search results
Results from the WOW.Com Content Network
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.
These 11 uniform tilings have 32 different uniform colorings. A uniform coloring allows identical sided polygons at a vertex to be colored differently, while still maintaining vertex-uniformity and transformational congruence between vertices. (Note: Some of the tiling images shown below are not color-uniform.)
k-uniform tilings with the same vertex figures can be further identified by their wallpaper group symmetry. 1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings.
There are 4 symmetry classes of reflection on the sphere, and three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are also listed. (Increasing any of the numbers defining a hyperbolic or Euclidean tiling makes another hyperbolic tiling.) Point groups:
Euclidean kisrhombille tiling. In geometry, a kisrhombille is a uniform tiling of rhombic faces, divided by central points into four triangles. Examples: 3-6 kisrhombille – Euclidean plane; 3-7 kisrhombille – hyperbolic plane; 3-8 kisrhombille – hyperbolic plane; 4-5 kisrhombille – hyperbolic plane
Nearly all uniform tessellations can be generated by a Wythoff construction, and represented by a Coxeter–Dynkin diagram. The terminology for the convex uniform polytopes used in uniform polyhedron, uniform 4-polytope, uniform 5-polytope, uniform 6-polytope, uniform tiling, and convex uniform honeycomb articles were coined by Norman Johnson.
List of Euclidean uniform tilings; Uniform tiling symmetry mutations; W. Wang tile This page was last edited on 5 November 2014, at 22:50 (UTC). ...
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).