Search results
Results from the WOW.Com Content Network
For example, an object that uses memoization to cache the results of expensive computations could still be considered an immutable object. Strings and other concrete objects are typically expressed as immutable objects to improve readability and runtime efficiency in object-oriented programming.
Some languages, such as C++, Perl and Ruby, normally allow the contents of a string to be changed after it has been created; these are termed mutable strings. In other languages, such as Java , JavaScript , Lua , Python , and Go , the value is fixed and a new string must be created if any alteration is to be made; these are termed immutable ...
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string. See for example Concatenation below.
The std::string type is the main string datatype in standard C++ since 1998, but it was not always part of C++. From C, C++ inherited the convention of using null-terminated strings that are handled by a pointer to their first element, and a library of functions that manipulate such strings.
There are multiple ways to implement the flyweight pattern. One example is mutability: whether the objects storing extrinsic flyweight state can change. Immutable objects are easily shared, but require creating new extrinsic objects whenever a change in state occurs. In contrast, mutable objects can share state.
In C++, a member variable can be declared as mutable, indicating that this restriction does not apply to it. In some cases, this can be useful, for example with caching, reference counting, and data synchronization. In these cases, the logical meaning (state) of the object is unchanged, but the object is not physically constant since its ...
Mutable (non-const) operations can then be implemented in such a way that they create new objects instead of modifying the existing ones. This approach is characteristic of functional programming and is also used by the string implementations in Java, C#, and Python. (See Immutable object.)