Search results
Results from the WOW.Com Content Network
A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. [2] Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc.
The term extrapolation is used to find data points outside the range of known data points. In curve fitting problems, the constraint that the interpolant has to go exactly through the data points is relaxed. It is only required to approach the data points as closely as possible (within some other constraints).
Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial. Neville's algorithm evaluates this polynomial. Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences .
For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbor interpolation, by assigning the function value at the given point to all the points inside the cell. [ 3 ]
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
For including parser functions, variables and behavior switches, see Help:Magic words; For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula; For a guide to editing, see Wikipedia:Contributing to Wikipedia; For an overview of commonly used style guidelines, see Wikipedia:Simplified Manual of Style
Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...