Search results
Results from the WOW.Com Content Network
Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.
In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial. In representation theory, an irreducible representation is a nontrivial representation with no nontrivial proper subrepresentations. Similarly, an irreducible module is another name for a simple module.
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
Consider the polynomial Q(x) = 3x 4 + 15x 2 + 10.In order for Eisenstein's criterion to apply for a prime number p it must divide both non-leading coefficients 15 and 10, which means only p = 5 could work, and indeed it does since 5 does not divide the leading coefficient 3, and its square 25 does not divide the constant coefficient 10.
In other words, an absolutely irreducible algebraic set is a synonym of an algebraic variety, [5] which emphasizes that the coefficients of the defining equations may not belong to an algebraically closed field. Absolutely irreducible is also applied, with the same meaning, to linear representations of algebraic groups.
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of ...
To see this, choose a monic irreducible polynomial f(X 1, ..., X n, Y) whose root generates N over E. If f(a 1, ..., a n, Y) is irreducible for some a i, then a root of it will generate the asserted N 0.) Construction of elliptic curves with large rank. [2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's ...
An irreducible component of an algebraic set is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y = 0.