enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graphene - Wikipedia

    en.wikipedia.org/wiki/Graphene

    Graphene is a transparent and flexible conductor that holds great promise for various material/device applications, including solar cells, [338] light-emitting diodes (LED), integrated photonic circuit devices, [339] [340] touch panels, and smart windows or phones. [341]

  3. Electronic properties of graphene - Wikipedia

    en.wikipedia.org/wiki/Electronic_properties_of...

    Graphene doped with various gaseous species (both acceptors and donors) can be returned to an undoped state by gentle heating in vacuum. [22] [24] Even for dopant concentrations in excess of 10 12 cm −2 carrier mobility exhibits no observable change. [24] Graphene doped with potassium in ultra-high vacuum at low temperature can reduce ...

  4. Two-dimensional semiconductor - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_semiconductor

    A two-dimensional semiconductor (also known as 2D semiconductor) is a type of natural semiconductor with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material graphene, a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice. [1]

  5. Discovery of graphene - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_graphene

    This "epitaxial graphene" consists of a single-atom-thick hexagonal lattice of sp 2-bonded carbon atoms, as in free-standing graphene. However, significant charge transfers from the substrate to the epitaxial graphene, and in some cases, the d-orbitals of the substrate atoms hybridize with the π orbitals of graphene, which significantly alters ...

  6. Transparent conducting film - Wikipedia

    en.wikipedia.org/wiki/Transparent_conducting_film

    Doped metal oxides for use as transparent conducting layers in photovoltaic devices are typically grown on a glass substrate. This glass substrate, apart from providing a support that the oxide can grow on, has the additional benefit of blocking most infrared wavelengths greater than 2 μm for most silicates, and converting it to heat in the glass layer.

  7. Dirac cone - Wikipedia

    en.wikipedia.org/wiki/Dirac_cone

    In physics, Dirac cones are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. [ 1 ] [ 2 ] [ 3 ] In these materials, at energies near the Fermi level , the valence band and conduction band take the shape of the upper and lower halves ...

  8. Photoconductivity - Wikipedia

    en.wikipedia.org/wiki/Photoconductivity

    When light is absorbed by a material such as a semiconductor, the number of free electrons and holes increases, resulting in increased electrical conductivity. [2] To cause excitation, the light that strikes the semiconductor must have enough energy to raise electrons across the band gap , or to excite the impurities within the band gap.

  9. Graphene lens - Wikipedia

    en.wikipedia.org/wiki/Graphene_lens

    A material with tunable thickness t and conductivity σ is suitable for optoelectronic applications if R s is reasonably small. Graphene is such a material; the number of graphene layers that comprise the film can tune t and the inherent tunability of graphene's optical properties via doping or grating can tune sigma.