enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    The posterior probability distribution of one random variable given the value of another can be calculated with Bayes' theorem by multiplying the prior probability distribution by the likelihood function, and then dividing by the normalizing constant, as follows:

  3. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  4. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  5. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    The posterior probability of a model depends on the evidence, or marginal likelihood, which reflects the probability that the data is generated by the model, and on the prior belief of the model. When two competing models are a priori considered to be equiprobable, the ratio of their posterior probabilities corresponds to the Bayes factor .

  6. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    In this example, the posterior probability mass is evenly split between the values 0.08 and 0.43. The posterior probabilities are obtained via ABC with large n {\displaystyle n} by utilizing the summary statistic (with ϵ = 0 {\displaystyle \epsilon =0} and ϵ = 2 {\displaystyle \epsilon =2} ) and the full data sequence (with ϵ = 0 ...

  7. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian-specific workflow stratifies this approach to include three sub-steps: (b)–(i) formalizing prior distributions based on background knowledge and prior elicitation; (b)–(ii) determining the likelihood function based on a nonlinear function ; and (b)–(iii) making a posterior inference. The resulting posterior inference can be used ...

  8. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  9. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    Given a vector of parameters to determine, a prior probability () over those parameters and a likelihood (,) for making observation , given parameter values and an experiment design , the posterior probability can be calculated using Bayes' theorem