Search results
Results from the WOW.Com Content Network
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
The above expansion holds because the derivative of e x with respect to x is also e x, and e 0 equals 1. This leaves the terms ( x − 0) n in the numerator and n ! in the denominator of each term in the infinite sum.
[1] The approximation can be proven several ways, and is closely related to the binomial theorem . By Bernoulli's inequality , the left-hand side of the approximation is greater than or equal to the right-hand side whenever x > − 1 {\displaystyle x>-1} and α ≥ 1 {\displaystyle \alpha \geq 1} .
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π ( x ) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π ( x ) and x / log x as x increases ...
As an asymptotic expansion, this series is not convergent: it is a reasonable approximation only if the series is truncated at a finite number of terms, and only large values of x are employed. This expansion follows directly from the asymptotic expansion for the exponential integral. This implies e.g. that we can bracket li as: