Search results
Results from the WOW.Com Content Network
Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
The harmonic series is the infinite series = = + + + + + in which the terms are all of the positive unit fractions. It is a divergent series : as more terms of the series are included in partial sums of the series, the values of these partial sums grow arbitrarily large, beyond any finite limit.
The number e can be expressed as the sum of the following infinite series: = =! for any real number x. In the special case where x = 1 or −1, we have: = =!, [2] and = = ()!. ...
The Leibniz formula can be interpreted as a Dirichlet series using the unique non-principal Dirichlet character modulo 4. As with other Dirichlet series, this allows the infinite sum to be converted to an infinite product with one term for each prime number. Such a product is called an Euler product.
In mathematics, the infinite series 1 / 4 + 1 / 16 + 1 / 64 + 1 / 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1]