enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom...

    Here, the degrees of freedom arises from the residual sum-of-squares in the numerator, and in turn the n − 1 degrees of freedom of the underlying residual vector {¯}. In the application of these distributions to linear models, the degrees of freedom parameters can take only integer values.

  3. Welch–Satterthwaite equation - Wikipedia

    en.wikipedia.org/wiki/Welch–Satterthwaite_equation

    In statistics and uncertainty analysis, the Welch–Satterthwaite equation is used to calculate an approximation to the effective degrees of freedom of a linear combination of independent sample variances, also known as the pooled degrees of freedom, [1] [2] corresponding to the pooled variance.

  4. Expected mean squares - Wikipedia

    en.wikipedia.org/wiki/Expected_mean_squares

    In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.

  5. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The sum of n exponential (β) random variables is a gamma (n, β) random variable. Since n is an integer, the gamma distribution is also a Erlang distribution. The sum of the squares of N standard normal random variables has a chi-squared distribution with N degrees of freedom.

  6. Squared deviations from the mean - Wikipedia

    en.wikipedia.org/wiki/Squared_deviations_from...

    The sum of squared deviations needed to calculate sample variance (before deciding whether to divide by n or n − 1) is most easily calculated as = From the two derived expectations above the expected value of this sum is

  7. Partition of sums of squares - Wikipedia

    en.wikipedia.org/wiki/Partition_of_sums_of_squares

    If the sum of squares were not normalized, its value would always be larger for the sample of 100 people than for the sample of 20 people. To scale the sum of squares, we divide it by the degrees of freedom, i.e., calculate the sum of squares per degree of freedom, or variance. Standard deviation, in turn, is the square root of the variance.

  8. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well.

  9. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The degree of freedom, =, equals the number of observations n minus the number of fitted parameters m. In weighted least squares , the definition is often written in matrix notation as χ ν 2 = r T W r ν , {\displaystyle \chi _{\nu }^{2}={\frac {r^{\mathrm {T} }Wr}{\nu }},} where r is the vector of residuals, and W is the weight matrix, the ...