Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Tsiolkovsky calculated, using the Tsiolkovsky equation, [16]: 1 that the horizontal speed required for a minimal orbit around the Earth is 8,000 m/s (5 miles per second) and that this could be achieved by means of a multistage rocket fueled by liquid oxygen and liquid hydrogen. In the article "Exploration of Outer Space by Means of Rocket ...
In the relativistic case, the equation is still valid if is the acceleration in the rocket's reference frame and is the rocket's proper time because at velocity 0 the relationship between force and acceleration is the same as in the classical case. Solving this equation for the ratio of initial mass to final mass gives
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Figure 1: Approximation of a finite thrust maneuver with an impulsive change in velocity. An impulsive maneuver is the mathematical model of a maneuver as an instantaneous change in the spacecraft's velocity (magnitude and/or direction) [3] as illustrated in figure 1. It is the limit case of a burn to generate a particular amount of delta-v, as ...
In rockets for a given target orbit, a rocket's mass fraction is the portion of the rocket's pre-launch mass (fully fueled) that does not reach orbit.The propellant mass fraction is the ratio of just the propellant to the entire mass of the vehicle at takeoff (propellant plus dry mass).
"Using this formula with () as the varying mass of the rocket is mathematically equivalent to the derived Tsiolkovsky rocket equation, but this derivation is not correct. [ citation needed ] A simple counter example is to consider a rocket travelling with a constant velocity v {\displaystyle v} with two maneuvering thrusters pointing out on ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives: