Search results
Results from the WOW.Com Content Network
RAID 0 (also known as a stripe set or striped volume) splits ("stripes") data evenly across two or more disks, without parity information, redundancy, or fault tolerance. Since RAID 0 provides no fault tolerance or redundancy, the failure of one drive will cause the entire array to fail, due to data being striped across all disks.
A typical RAID 10 configuration. RAID 10, also called RAID 1+0 and sometimes RAID 1&0, is similar to RAID 01 with an exception that the two used standard RAID levels are layered in the opposite order; thus, RAID 10 is a stripe of mirrors.
Those RAID systems made their way to the consumer market, for users wanting the fault-tolerance of RAID without investing in expensive SCSI drives. Fast consumer drives make it possible to build RAID systems at lower cost than with SCSI, but most ATA RAID controllers lack a dedicated buffer or high-performance XOR hardware for parity calculation.
Under traditional RAID, an entire disk storage system of, say, 100 disks would be split into multiple arrays each of, say, 10 disks. By contrast, under declustered RAID, the entire storage system is used to make one array. Every data item is written twice, as in mirroring, but logically adjacent data and copies are spread arbitrarily.
A flawed RAID 5/6 also exists, but can result in data loss.) [10] For RAID 1, the devices must have complementary sizes. For example, a filesystem spanning two 500 GB devices and one 1 TB device could provide RAID1 for all data, while a filesystem spanning a 1 TB device and a single 500 GB device could only provide RAID1 for 500 GB of data.
The older "Intel Matrix RAID" is supported under Microsoft Windows XP. Linux supports Matrix RAID and Rapid Storage Technology (RST) through device mapper, with dmraid tool, for RAID 0, 1 and 10. And Linux MD RAID, with mdadm tool, for RAID 0, 1, 10, and 5. Set up of the RAID volumes must be done by using the ROM option in the Matrix Storage ...
A RAID level is any of the possible configurations of a RAID disk array. RAID stands for redundant array of independent disks (or, formerly, redundant array of inexpensive disks ). RAID levels may refer to:
In some RAID configurations, such as RAID 0, failure of a single member drive of the RAID array causes all stored data to be lost. In other RAID configurations, such as a RAID 5 that contains distributed parity and provides redundancy , if one member drive fails the data can be restored using the other drives in the array.