enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  3. Valence electron - Wikipedia

    en.wikipedia.org/wiki/Valence_electron

    However, transition elements have (n−1)d energy levels that are very close in energy to the n s level. [2] So as opposed to main-group elements, a valence electron for a transition metal is defined as an electron that resides outside a noble-gas core. [3]

  4. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    The energy level of the bonding orbitals is lower, and the energy level of the antibonding orbitals is higher. For the bond in the molecule to be stable, the covalent bonding electrons occupy the lower energy bonding orbital, which may be signified by such symbols as σ or π depending on the situation.

  5. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...

  6. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    Although it is sometimes stated that all the electrons in a shell have the same energy, this is an approximation. However, the electrons in one subshell do have exactly the same level of energy, with later subshells having more energy per electron than earlier ones. This effect is great enough that the energy ranges associated with shells can ...

  7. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    However, in order for a valence band electron to be promoted to the conduction band, it requires a specific minimum amount of energy for the transition. This required energy is an intrinsic characteristic of the solid material. Electrons can gain enough energy to jump to the conduction band by absorbing either a phonon (heat) or a photon (light).

  8. Valence (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Valence_(chemistry)

    The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1.

  9. Quasi Fermi level - Wikipedia

    en.wikipedia.org/wiki/Quasi_Fermi_level

    A quasi Fermi level is a term used in quantum mechanics and especially in solid state physics for the Fermi level (chemical potential of electrons) that describes the population of electrons separately in the conduction band and valence band, when their populations are displaced from equilibrium.