enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    Molecules can also undergo transitions in their vibrational or rotational energy levels. Energy level transitions can also be nonradiative, meaning emission or absorption of a photon is not involved. If an atom, ion, or molecule is at the lowest possible energy level, it and its electrons are said to be in the ground state.

  3. Excited state - Wikipedia

    en.wikipedia.org/wiki/Excited_state

    Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).

  4. Atomic, molecular, and optical physics - Wikipedia

    en.wikipedia.org/wiki/Atomic,_molecular,_and...

    The change in energy between the two energy levels must be accounted for (conservation of energy). In a neutral atom, the system will emit a photon of the difference in energy. However, if the lower state is in an inner shell, a phenomenon known as the Auger effect may take place where the energy is transferred to another bound electrons ...

  5. Raman scattering - Wikipedia

    en.wikipedia.org/wiki/Raman_scattering

    In chemistry and physics, Raman scattering or the Raman effect (/ ˈ r ɑː m ən /) is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction.

  6. Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Raman_spectroscopy

    Energy-level diagram showing the states involved in Raman spectra. Raman spectroscopy (/ ˈ r ɑː m ən /) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. [1]

  7. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted. Emission spectrum of hydrogen. The above picture shows the visible light emission spectrum for hydrogen. If ...

  8. Photochemistry - Wikipedia

    en.wikipedia.org/wiki/Photochemistry

    Photoexcitation is the first step in a photochemical process where the reactant is elevated to a state of higher energy, an excited state.The first law of photochemistry, known as the Grotthuss–Draper law (for chemists Theodor Grotthuss and John W. Draper), states that light must be absorbed by a chemical substance in order for a photochemical reaction to take place.

  9. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]).