enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eddington number - Wikipedia

    en.wikipedia.org/wiki/Eddington_number

    In astrophysics, the Eddington number, N Edd, is the number of protons in the observable universe. Eddington originally calculated it as about 1.57 × 10 79; current estimates make it approximately 10 80. [1]

  3. Neutron star - Wikipedia

    en.wikipedia.org/wiki/Neutron_star

    The sea of neutrons formed after neutron drip provides additional pressure support, which helps maintain the star's structural integrity and prevents gravitational collapse. The neutron drip takes place within the inner crust of the neutron star and starts when the density becomes so high that nuclei can no longer hold additional neutrons.

  4. Elementary particle - Wikipedia

    en.wikipedia.org/wiki/Elementary_particle

    Therefore, one can conclude that most of the visible mass of the universe consists of protons and neutrons, which, like all baryons, in turn consist of up quarks and down quarks. Some estimates imply that there are roughly 10 80 baryons (almost entirely protons and neutrons) in the observable universe. [11]

  5. List of particles - Wikipedia

    en.wikipedia.org/wiki/List_of_particles

    An atom consists of a small, heavy nucleus surrounded by a relatively large, light cloud of electrons. An atomic nucleus consists of 1 or more protons and 0 or more neutrons. Protons and neutrons are, in turn, made of quarks. Each type of atom corresponds to a specific chemical element. To date, 118 elements have been discovered or created.

  6. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    In many substances, thermal neutron reactions show a much larger effective cross-section than reactions involving faster neutrons, and thermal neutrons can therefore be absorbed more readily (i.e., with higher probability) by any atomic nuclei that they collide with, creating a heavier – and often unstable – isotope of the chemical element ...

  7. List of neutron stars - Wikipedia

    en.wikipedia.org/wiki/List_of_Neutron_stars

    Zooming to RX J1856.5−3754 which is one of the Magnificent Seven and, at a distance of about 400 light-years, the closest-known neutron star. Neutron stars are the collapsed cores of supergiant stars. [1]

  8. Universe - Wikipedia

    en.wikipedia.org/wiki/Universe

    The observable universe contains as many as an estimated 2 trillion galaxies [95] [96] [97] and, overall, as many as an estimated 10 24 stars [98] [99] – more stars (and earth-like planets) than all the grains of beach sand on planet Earth; [100] [101] [102] but less than the total number of atoms estimated in the universe as 10 82; [103] and ...

  9. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    Very much like neutrons do in nuclear reactors, neutrinos can induce fission reactions within heavy nuclei. [50] So far, this reaction has not been measured in a laboratory, but is predicted to happen within stars and supernovae. The process affects the abundance of isotopes seen in the universe. [49]