Search results
Results from the WOW.Com Content Network
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
Consequently, the term greatest lower bound (abbreviated as GLB) is also commonly used. [1] The supremum (abbreviated sup ; pl. : suprema ) of a subset S {\displaystyle S} of a partially ordered set P {\displaystyle P} is the least element in P {\displaystyle P} that is greater than or equal to each element of S , {\displaystyle S,} if such an ...
Today the commutative property is a well-known and basic property used in most branches of mathematics. The first recorded use of the term commutative was in a memoir by François Servois in 1814, [1] [10] which used the word commutatives when describing functions that have what is now called the commutative property.
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra.
For finite groups, a "small neighborhood" is taken to be a subgroup defined in terms of a prime number p, usually the local subgroups, the normalizers of the nontrivial p-subgroups. In which case, a property is said to be local if it can be detected from the local subgroups.
In probability, a generic property is an event that occurs almost surely, meaning that it occurs with probability 1. For example, the law of large numbers states that the sample mean converges almost surely to the population mean. This is the definition in the measure theory case specialized to a probability space.
In mathematics, the associative property [1] is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .
The Archimedean property appears in Book V of Euclid's Elements as Definition 4: Magnitudes are said to have a ratio to one another which can, when multiplied, exceed one another. Because Archimedes credited it to Eudoxus of Cnidus it is also known as the "Theorem of Eudoxus" or the Eudoxus axiom. [3]