enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector area - Wikipedia

    en.wikipedia.org/wiki/Vector_area

    The vector area of a parallelogram is given by the cross product of the two vectors that span it; it is twice the (vector) area of the triangle formed by the same vectors. In general, the vector area of any surface whose boundary consists of a sequence of straight line segments (analogous to a polygon in two dimensions) can be calculated using ...

  3. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  4. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product a × b is defined as a vector c that is perpendicular (orthogonal) to both a and b, with a direction given by the right-hand rule [1] and a magnitude equal to the area of the parallelogram that the vectors span. [2] The cross product is defined by the formula [8] [9]

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...

  6. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  7. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The area of the parallelogram is the absolute value of the determinant of the matrix formed by the vectors representing the parallelogram's sides. If the matrix entries are real numbers, the matrix A can be used to represent two linear maps: one that maps the standard basis vectors to the rows of A, and one that maps them to the columns of A.

  8. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The oriented relative area of a parallelogram in any affine space, a type of bivector, is defined as ⁠ ⁠ where ⁠ ⁠ and ⁠ ⁠ are translation vectors from one vertex of the parallelogram to each of the two adacent vertices. In Euclidean space, the magnitude of this bivector is a well-defined scalar number representing the area of the ...

  9. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    convex, zonohedron. In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are.