Search results
Results from the WOW.Com Content Network
A standard technique is to use a modulo function on the key, by selecting a divisor M which is a prime number close to the table size, so h(K) ≡ K (mod M). The table size is usually a power of 2. This gives a distribution from {0, M − 1}. This gives good results over a large number of key sets.
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...
In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also allow arbitrary insertions and deletions of key–value pairs, at amortized constant average cost per operation. [3] [4] [5] Hashing is an example of a space-time tradeoff.
A tabular data card proposed for Babbage's Analytical Engine showing a key–value pair, in this instance a number and its base-ten logarithm. A key–value database, or key–value store, is a data storage paradigm designed for storing, retrieving, and managing associative arrays, and a data structure more commonly known today as a dictionary or hash table.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
The symbol table must have some means of differentiating references to the different "p"s. A common data structure used to implement symbol tables is the hash table. The time for searching in hash tables is independent of the number of elements stored in the table, so it is efficient for a large number of elements.
In computer science, a priority search tree is a tree data structure for storing points in two dimensions. It was originally introduced by Edward M. McCreight. [1] It is effectively an extension of the priority queue with the purpose of improving the search time from O(n) to O(s + log n) time, where n is the number of points in the tree and s is the number of points returned by the search.