Search results
Results from the WOW.Com Content Network
The principle of maximum caliber (MaxCal) or maximum path entropy principle, suggested by E. T. Jaynes, [1] can be considered as a generalization of the principle of maximum entropy. It postulates that the most unbiased probability distribution of paths is the one that maximizes their Shannon entropy. This entropy of paths is sometimes called ...
To practically use such long sequences, after 1 we have to use 0, but there remains a freedom of choosing the probability of 0 after 0. Let us denote this probability by , then entropy coding would allow encoding a message using this chosen probability distribution. The stationary probability distribution of symbols for a given turns out to be
Five eight-step random walks from a central point. Some paths appear shorter than eight steps where the route has doubled back on itself. (animated version)In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some mathematical space.
Any random graph model (at a fixed set of parameter values) results in a probability distribution on graphs, and those that are maximum entropy within the considered class of distributions have the special property of being maximally unbiased null models for network inference [2] (e.g. biological network inference).
Maximum entropy; Soft configuration ... and ask for the probability P that there is a path from the top boundary to the bottom boundary. ... 0.59274(10), [25] ...
1.4×10 −3: Probability of a human birth giving triplets or higher-order multiples [18] Probability of being dealt a full house in poker 1.9×10 −3: Probability of being dealt a flush in poker 2.7×10 −3: Probability of a random day of the year being your birthday (for all birthdays besides Feb. 29) 4×10 −3: Probability of being dealt ...
In other words, if X n converges in probability to X sufficiently quickly (i.e. the above sequence of tail probabilities is summable for all ε > 0), then X n also converges almost surely to X. This is a direct implication from the Borel–Cantelli lemma. If S n is a sum of n real independent random variables:
Seidel's algorithm is an algorithm designed by Raimund Seidel in 1992 for the all-pairs-shortest-path problem for undirected, unweighted, connected graphs. [1] It solves the problem in () expected time for a graph with vertices, where < is the exponent in the complexity () of matrix multiplication.