enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stellar rotation - Wikipedia

    en.wikipedia.org/wiki/Stellar_rotation

    Stars slowly lose mass by the emission of a stellar wind from the photosphere. The star's magnetic field exerts a torque on the ejected matter, resulting in a steady transfer of angular momentum away from the star. Stars with a rate of rotation greater than 15 km/s also exhibit more rapid mass loss, and consequently a faster rate of rotation decay.

  3. Rotating black hole - Wikipedia

    en.wikipedia.org/wiki/Rotating_black_hole

    As all known stars rotate and realistic collisions have non-zero angular momentum, it is expected that all black holes in nature are rotating black holes. [ 1 ] [ 2 ] Since observed astronomical objects do not possess an appreciable net electric charge, only the Kerr solution has astrophysical relevance.

  4. Poles of astronomical bodies - Wikipedia

    en.wikipedia.org/wiki/Poles_of_astronomical_bodies

    The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.

  5. Galaxy rotation curve - Wikipedia

    en.wikipedia.org/wiki/Galaxy_rotation_curve

    The rotational/orbital speeds of galaxies/stars do not follow the rules found in other orbital systems such as stars/planets and planets/moons that have most of their mass at the centre. Stars revolve around their galaxy's centre at equal or increasing speed over a large range of distances.

  6. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).

  7. Diurnal motion - Wikipedia

    en.wikipedia.org/wiki/Diurnal_motion

    Thus, northern circumpolar stars move counterclockwise around Polaris, the north pole star. At the North Pole, the cardinal directions do not apply to diurnal motion. Within the circumpolar circle, all the stars move simply rightward, or looking directly overhead, counterclockwise around the zenith, where Polaris is.

  8. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.

  9. Axial precession - Wikipedia

    en.wikipedia.org/wiki/Axial_precession

    In approximately 3,200 years, the star Gamma Cephei in the Cepheus constellation will succeed Polaris for this position. The south celestial pole currently lacks a bright star to mark its position, but over time precession also will cause bright stars to become South Stars. As the celestial poles shift, there is a corresponding gradual shift in ...