enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    In general in 2D, we can take a p + b q and c p + d q for integers a,b, c and d such that ad-bc is 1 or -1. This ensures that p and q themselves are integer linear combinations of the other two vectors. Each pair p, q defines a parallelogram, all with the same area, the magnitude of the cross product. One parallelogram fully defines the whole ...

  4. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  5. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    The space and product form an algebra over a field, which is not commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket. Specifically, the space together with the product, ( R 3 , × ) {\displaystyle (\mathbb {R} ^{3},\times )} is isomorphic to the Lie algebra of three-dimensional rotations, denoted s o ...

  6. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    Bivectors provide a more natural representation of the pseudovector quantities of 3D vector calculus that are derived as a cross product, such as oriented area, oriented angle of rotation, torque, angular momentum and the magnetic field. A trivector can represent an oriented volume, and so on.

  7. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    A suitable normal vector is given by the cross product = (), and the point r 0 can be taken to be any of the given points p 1, p 2 or p 3 [7] (or any other point in the plane). Operations [ edit ]

  8. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    Thanks to the Jacobi Identity, the three-dimensional cross product gives the structure of a Lie algebra, which is isomorphic to (), the Lie algebra of the 3d rotation group. Because the Jacobi identity fails in seven dimensions, the seven-dimensional cross product does not give R 7 {\displaystyle \mathbb {R} ^{7}} the structure of a Lie algebra.

  9. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    The cross product and triple product in three dimensions each admit both geometric and algebraic interpretations. The cross product u × v can be interpreted as a vector which is perpendicular to both u and v and whose magnitude is equal to the area of the parallelogram determined by the two vectors.