enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    For every penalty coefficient p, the set of global optimizers of the penalized problem, X p *, is non-empty. For every ε>0, there exists a penalty coefficient p such that the set X p * is contained in an ε-neighborhood of the set X*. This theorem is helpful mostly when f p is convex, since in this case, we can find the global optimizers of f p.

  3. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The combined LP has both x and y as variables: Maximize 1. subject to Ax ≤ b, A T y ≥ c, c T x ≥ b T y, x ≥ 0, y ≥ 0. If the combined LP has a feasible solution (x,y), then by weak duality, c T x = b T y. So x must be a maximal solution of the primal LP and y must be a minimal solution of the dual LP. If the combined LP has no ...

  4. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The strong duality theorem states that if the primal has an optimal solution, x *, then the dual also has an optimal solution, y *, and c T x * =b T y *. A linear program can also be unbounded or infeasible. Duality theory tells us that if the primal is unbounded then the dual is infeasible by the weak duality theorem.

  5. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in probably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  6. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  7. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  8. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    We can visualize contours of f given by f(x, y) = d for various values of d, and the contour of g given by g(x, y) = c. Suppose we walk along the contour line with g = c. We are interested in finding points where f almost does not change as we walk, since these points might be maxima. There are two ways this could happen:

  9. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Otherwise, let x j be any variable that is set to a fractional value in the relaxed solution. Form two subproblems, one in which x j is set to 0 and the other in which x j is set to 1; in both subproblems, the existing assignments of values to some of the variables are still used, so the set of remaining variables becomes V i \ {x j ...