Search results
Results from the WOW.Com Content Network
is the motor velocity, or motor speed, [2] constant (not to be confused with kV, the symbol for kilovolt), measured in revolutions per minute (RPM) per volt or radians per volt second, rad/V·s: [3]
This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached. In this example, a speed of 50.0% of terminal speed is reached after only about 3 seconds, while it takes 8 seconds to reach 90%, 15 seconds to reach 99%, and so on.
This means that the time constant is the time elapsed after 63% of V max has been reached Setting for t = for the fall sets V(t) equal to 0.37V max, meaning that the time constant is the time elapsed after it has fallen to 37% of V max. The larger a time constant is, the slower the rise or fall of the potential of a neuron.
Speed is the magnitude of velocity (a vector), which indicates additionally the direction of motion. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph).
From the planetary frame of reference, the ship's speed will appear to be limited by the speed of light — it can approach the speed of light, but never reach it. If a ship is using 1 g constant acceleration, it will appear to get near the speed of light in about a year, and have traveled about half a light year in distance. For the middle of ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
Diagram of tractive effort versus speed for a hypothetical locomotive with power at rail of ~7000 kW. The shape of the graph is shown at right. The line AB shows operation at the maximum tractive effort, the line BC shows continuous tractive effort that is inversely proportional to speed (constant power). [6]
Because speed is constant, the velocity vectors on the right sweep out a circle as time advances. For a swept angle dθ = ω dt the change in v is a vector at right angles to v and of magnitude v dθ , which in turn means that the magnitude of the acceleration is given by a c = v d θ d t = v ω = v 2 r {\displaystyle a_{c}=v{\frac {d\theta ...