Search results
Results from the WOW.Com Content Network
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
FTIR spectroscopy can provide insightful information in the microstructure for different plant taxa. Cuticles is a waxy protective layer that covers plant leaves and stems to prevent loss of water. Its constituted waxy polymers are generally well-preserved in plant fossil, which can be used for functional group analysis.
A cell wall is a structural layer that surrounds some cell types, found immediately outside the cell membrane.It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, and functions as a selective barrier. [1]
Fourier-transform spectroscopy (FTS) is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not.
Fourier transform infrared (FTIR) spectroscopy is a measurement technique that allows one to record infrared spectra. Infrared light is guided through an interferometer and then through the sample (or vice versa).
There are two main approaches to two-dimensional spectroscopy, the Fourier-transform method, in which the data is collected in the time-domain and then Fourier-transformed to obtain a frequency-frequency 2D correlation spectrum, and the frequency domain approach in which all the data is collected directly in the frequency domain.
The schematic representation of a nano-FTIR system with a broadband infrared source. Nano-FTIR (nanoscale Fourier transform infrared spectroscopy) is a scanning probe technique that utilizes as a combination of two techniques: Fourier transform infrared spectroscopy (FTIR) and scattering-type scanning near-field optical microscopy (s-SNOM).
Tumor stroma and extracellular matrix in hypoxia. Tumor hypoxia is the situation where tumor cells have been deprived of oxygen.As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues.