Search results
Results from the WOW.Com Content Network
Plastic degradation in marine bacteria describes when certain pelagic bacteria break down polymers and use them as a primary source of carbon for energy. Polymers such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) are incredibly useful for their durability and relatively low cost of production, however it is their persistence and difficulty to be properly ...
The plastisphere is a human-made ecosystem consisting of organisms able to live on plastic waste. Plastic marine debris, most notably microplastics, accumulates in aquatic environments and serves as a habitat for various types of microorganisms, including bacteria and fungi.
Biodegradable additives can convert the plastic degradation process to one of biodegradation. Instead of being degraded simply by environmental factors, such as sunlight (photo-oxidation) or heat (thermal degradation), biodegradable additives allow polymers to be degraded by microorganisms and bacteria through direct or indirect attack.
Microbial degradation is accomplished by 3 steps: colonization of the plastic surface, hydrolysis, and mineralization. First, microorganisms populate the exposed plastics. Next, the bacteria secrete enzymes that bind to the carbon source or polymer substrates and then split the hydrocarbon bonds. The process results in the production of H 2 O ...
Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycle , including during their initial processing, use, disposal into the environment and recycling. [ 1 ]
Polyethylene oxide (PEO, M w 4 kDa) nanometric crystallites (4 nm) PEG and related polymers (PEG phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., PEG is very sensitive to sonolytic degradation and PEG degradation products can be toxic to mammalian cells.
Diverse viruses colonize the human skin and differ by skin site. [27] This skin virome includes human viruses (i.e. human papillomavirus) and bacteriophages (bacterial viruses) that infect commensal skin bacteria such as Staphylococci. [28] Virus communities differ by moisture levels and degree of protection from the external environment. [27]
Poly(ethylene adipate) or PEA is an aliphatic polyester. [3] It is most commonly synthesized from a polycondensation reaction between ethylene glycol and adipic acid. [4] PEA has been studied as it is biodegradable through a variety of mechanisms and also fairly inexpensive compared to other polymers. [5]