Search results
Results from the WOW.Com Content Network
Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem .
Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.
In decision theory, the odds algorithm (or Bruss algorithm) is a mathematical method for computing optimal strategies for a class of problems that belong to the domain of optimal stopping problems. Their solution follows from the odds strategy , and the importance of the odds strategy lies in its optimality, as explained below.
A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. [1] It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision ...
In machine learning, early stopping is a form of regularization used to avoid overfitting when training a model with an iterative method, such as gradient descent. Such methods update the model to make it better fit the training data with each iteration. Up to a point, this improves the model's performance on data outside of the training set (e ...
The simulation can be performed either by a solution of kinetic equations for probability density functions, [7] [8] or by using a stochastic sampling method. [6] [9] The method is an adaptation of the Metropolis–Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, published by N. Metropolis et al. in ...
In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as convergence rate, precision, robustness and general performance.
What stopping rule minimizes the expected rank of the selected observation, and what is its corresponding value? The general solution to this full-information expected rank problem is unknown. The major difficulty is that the problem is fully history-dependent, that is, the optimal rule depends at every stage on all preceding values, and not ...