Search results
Results from the WOW.Com Content Network
Two tyrosines separated by a single amino acid, typically valine or another tyrosine, form a short intra-molecular diphenylether crosslink. [11] This can be crosslinked further by the enzyme extensin peroxidase [12] [13] [14] to form an inter-molecular bridge between extensin molecules and thus form networks and sheets.
Hydroxyproline is a major component of the protein collagen, [3] comprising roughly 13.5% of mammalian collagen. Hydroxyproline and proline play key roles for collagen stability. [4] They permit the sharp twisting of the collagen helix. [5]
They are members of the wider class of hydroxyproline (Hyp)-rich cell wall glycoproteins, a large and diverse group of glycosylated wall proteins. AGPs have been reported in a wide range of higher plants in seeds, roots, stems, leaves and inflorescences. AGPs account for only a small portion of the cell wall, usually no more than 1% of dry mass ...
Additionally, structural proteins (1-5%) are found in most plant cell walls; they are classified as hydroxyproline-rich glycoproteins (HRGP), arabinogalactan proteins (AGP), glycine-rich proteins (GRPs), and proline-rich proteins (PRPs). Each class of glycoprotein is defined by a characteristic, highly repetitive protein sequence.
One example of glycoproteins found in the body is mucins, which are secreted in the mucus of the respiratory and digestive tracts. The sugars when attached to mucins give them considerable water-holding capacity and also make them resistant to proteolysis by digestive enzymes. Glycoproteins are important for white blood cell recognition.
In 2001, biologically active hydroxyproline-rich glycopeptides were isolated from tobacco which activated the production of protease inhibitors in a similar way to systemin in tomatoes. [1] Although they are structurally unrelated to systemins, their similar function resulted in them being named hydroxyproline-rich systemins (HypSys).
Common in collagen, it often undergoes a post-translational modification to hydroxyproline. Glutamine: Q Gln Similar to glutamic acid, Gln contains an amide group where Glu has a carboxyl. Used in proteins and as a storage for ammonia, it is the most abundant amino acid in the body. Arginine: R Arg Functionally similar to lysine. Serine: S Ser
Amylopectin is a key component in the crystallization of starch's final configuration, [4] [5] [6] accounting for 70-80% of the final mass. [7] Composed of α-glucose, it is formed in plants as a primary measure of energy storage in tandem with this structural metric.