Search results
Results from the WOW.Com Content Network
The generator is decomposed into a pyramid of generators =, with the lowest one generating the image () at the lowest resolution, then the generated image is scaled up to (()), and fed to the next level to generate an image (+ (())) at a higher resolution, and so on. The discriminator is decomposed into a pyramid as well.
During training, at first only , are used in a GAN game to generate 4x4 images. Then G N − 1 , D N − 1 {\displaystyle G_{N-1},D_{N-1}} are added to reach the second stage of GAN game, to generate 8x8 images, and so on, until we reach a GAN game to generate 1024x1024 images.
Similarly, an image model prompted with the text "a photo of a CEO" might disproportionately generate images of white male CEOs, [128] if trained on a racially biased data set. A number of methods for mitigating bias have been attempted, such as altering input prompts [ 129 ] and reweighting training data.
DALL-E 2's "inpainting" and "outpainting" use context from an image to fill in missing areas using a medium consistent with the original, following a given prompt. For example, this can be used to insert a new subject into an image, or expand an image beyond its original borders. [ 34 ]
The Stable Diffusion model supports the ability to generate new images from scratch through the use of a text prompt describing elements to be included or omitted from the output. [8] Existing images can be re-drawn by the model to incorporate new elements described by a text prompt (a process known as "guided image synthesis" [ 49 ] ) through ...
Since the diffusion model is a general method for modelling probability distributions, if one wants to model a distribution over images, one can first encode the images into a lower-dimensional space by an encoder, then use a diffusion model to model the distribution over encoded images. Then to generate an image, one can sample from the ...
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The Inception Score (IS) is an algorithm used to assess the quality of images created by a generative image model such as a generative adversarial network (GAN). [1] The score is calculated based on the output of a separate, pretrained Inception v3 image classification model applied to a sample of (typically around 30,000) images generated by the generative model.