enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electro-osmosis - Wikipedia

    en.wikipedia.org/wiki/Electro-osmosis

    Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.

  3. Bosanquet equation - Wikipedia

    en.wikipedia.org/wiki/Bosanquet_equation

    The Bosanquet equation is a differential equation that is second-order in the time derivative, similar to Newton's Second Law, and therefore takes into account the fluid inertia. Equations of motion, like the Washburn's equation, that attempt to explain a velocity (instead of acceleration) as proportional to a driving force are often described ...

  4. Starling equation - Wikipedia

    en.wikipedia.org/wiki/Starling_equation

    The Starling principle holds that fluid movement across a semi-permeable blood vessel such as a capillary or small venule is determined by the hydrostatic pressures and colloid osmotic pressures (oncotic pressure) on either side of a semipermeable barrier that sieves the filtrate, retarding larger molecules such as proteins from leaving the blood stream.

  5. Capillary number - Wikipedia

    en.wikipedia.org/wiki/Capillary_number

    Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...

  6. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.

  7. Capillary surface - Wikipedia

    en.wikipedia.org/wiki/Capillary_surface

    The defining equation for a capillary surface is called the stress balance equation, [2] which can be derived by considering the forces and stresses acting on a small volume that is partly bounded by a capillary surface. For a fluid meeting another fluid (the "other" fluid notated with bars) at a surface , the equation reads

  8. Capillary electrophoresis–mass spectrometry - Wikipedia

    en.wikipedia.org/wiki/Capillary_electrophoresis...

    Capillary electrophoresis is a separation technique which uses high electric field to produce electroosmotic flow for separation of ions. Analytes migrate from one end of capillary to other based on their charge, viscosity and size. Higher the electric field, greater is the mobility.

  9. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.