Search results
Results from the WOW.Com Content Network
Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis ...
The construction of a failure detector is an essential, but a very difficult problem that occurred in the development of the fault-tolerant component in a distributed computer system. As a result, the failure detector was invented because of the need for detecting errors in the massive information transaction in distributed computing systems.
graph with an example of steps in a failure mode and effects analysis. Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.
All components of a design, The functionality of each component, The failure modes of each component, The effect of each component failure mode on the product functionality, The ability of any automatic diagnostics to detect the failure, The design strength (de-rating, safety factors), The impact of any latent fault tests, and
In the nominal, i.e. fault-free situation, the lower control loop operates to meet the control goals. The fault-detection (FDI) module monitors the closed-loop system to detect and isolate faults. The fault estimate is passed to the reconfiguration block, which modifies the control loop to reach the control goals in spite of the fault.
An Automated Optical Inspection device. Automated optical inspection (AOI) is an automated visual inspection of printed circuit board (PCB) (or LCD, transistor) manufacture where a camera autonomously scans the device under test for both catastrophic failure (e.g. missing component) and quality defects (e.g. fillet size or shape or component skew).
A fault coverage test passes when at least a specified percentage of all possible faults can be detected. If it does not pass, at least three options are possible. First, the designer can augment or otherwise improve the vector set, perhaps by using a more effective automatic test pattern generation tool.
ATPG (acronym for both automatic test pattern generation and automatic test pattern generator) is an electronic design automation method or technology used to find an input (or test) sequence that, when applied to a digital circuit, enables automatic test equipment to distinguish between the correct circuit behavior and the faulty circuit behavior caused by defects.