Search results
Results from the WOW.Com Content Network
The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API. In Spark 1.x, the RDD was the primary application programming interface (API), but as of Spark 2.x use of the Dataset API is encouraged [3] even though the RDD API is not deprecated. [4] [5] The RDD technology still underlies the Dataset API. [6] [7]
Altszyler and coauthors (2017) studied Word2vec performance in two semantic tests for different corpus size. [29] They found that Word2vec has a steep learning curve, outperforming another word-embedding technique, latent semantic analysis (LSA), when it is trained with medium to large corpus size (more than 10 million words). However, with a ...
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
Programming with Big Data in R (pbdR) [1] is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation. [ 2 ] [ 3 ] The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical ...
SPARK is a formally defined computer programming language based on the Ada language, intended for developing high integrity software used in systems where predictable and highly reliable operation is essential. It facilitates developing applications that demand safety, security, or business integrity.
where n is the size of the sample and the r i are estimated with the omission of one pair of variates at a time. [10] An alternative method is to divide the sample into g groups each of size p with n = pg. [11] Let r i be the estimate of the i th group. Then the estimator
The convergence of a regular estimator's distribution is, in a sense, locally uniform. This is often considered desirable and leads to the convenient property that a small change in the parameter does not dramatically change the distribution of the estimator.
The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).