Search results
Results from the WOW.Com Content Network
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y-axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
The reversible reaction N 2 O 4 (g) ⇌ 2NO 2 (g) is endothermic, so the equilibrium position can be shifted by changing the temperature. When heat is added and the temperature increases, the reaction shifts to the right and the flask turns reddish brown due to an increase in NO 2. This demonstrates Le Chatelier's principle: the equilibrium ...
During the latter half of the 19th century, physicists such as Rudolf Clausius, Peter Guthrie Tait, and Willard Gibbs worked to develop the concept of a thermodynamic system and the correlative energetic laws which govern its associated processes. The equilibrium state of a thermodynamic system is described by specifying its "state".
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
This definition can be derived from the microcanonical ensemble, which is a system of a constant number of particles, a constant volume and that does not exchange energy with its environment. Suppose that the system has some external parameter, x, that can be changed. In general, the energy eigenstates of the system will depend on x.
When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. [1] [2] At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a ...