Search results
Results from the WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
The XOR operation cancels addr(B) appearing twice in the equation and all we are left with is the addr(D). To start traversing the list in either direction from some point, the address of two consecutive items is required. If the addresses of the two consecutive items are reversed, list traversal will occur in the opposite direction. [1]
XOR can be used to swap two numeric variables in computers, using the XOR swap algorithm; however this is regarded as more of a curiosity and not encouraged in practice. XOR linked lists leverage XOR properties in order to save space to represent doubly linked list data structures.
Bitwise XOR of 4-bit integers. A bitwise XOR is a binary operation that takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of corresponding bits. The result in each position is 1 if only one of the bits is 1, but will be 0 if both are 0 or both are 1.
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0 ...
The rightmost bit of the LFSR is called the output bit, which is always also a tap. To obtain the next state, the tap bits are XOR-ed sequentially; then, all bits are shifted one place to the right, with the rightmost bit being discarded, and that result of XOR-ing the tap bits is fed back into the now-vacant leftmost bit.
Appending one linked list to another can be inefficient unless a reference to the tail is kept as part of the List structure, because it is needed to traverse the entire first list in order to find the tail, and then append the second list to this. Thus, if two linearly linked lists are each of length , list appending has asymptotic time ...
Parity only depends on the number of ones and is therefore a symmetric Boolean function.. The n-variable parity function and its negation are the only Boolean functions for which all disjunctive normal forms have the maximal number of 2 n − 1 monomials of length n and all conjunctive normal forms have the maximal number of 2 n − 1 clauses of length n.