enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Four-tensor - Wikipedia

    en.wikipedia.org/wiki/Four-tensor

    The stress–energy tensor of a continuum or field generally takes the form of a second-order tensor, and usually denoted by T. The timelike component corresponds to energy density (energy per unit volume), the mixed spacetime components to momentum density (momentum per unit volume), and the purely spacelike parts to the 3d stress tensor.

  3. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The definition of a tensor as a multidimensional array satisfying a transformation law traces back to the work of Ricci. [1] An equivalent definition of a tensor uses the representations of the general linear group. There is an action of the general linear group on the set of all ordered bases of an n-dimensional vector space.

  4. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The regular complex polytope 4 {4} 2, , in has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 4 {4} 2 has 16 vertices, and 8 4-edges. Its symmetry is 4 [4] 2, order 32. It also has a lower symmetry construction, , or 4 {}× 4 {}, with symmetry 4 [2] 4, order 16. This is the symmetry if the red and blue 4-edges are ...

  5. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general relativity, [8] in the mechanics of curved shells, [6] in examining the invariance properties of Maxwell's equations which has been of interest in metamaterials [9] [10] and in many other fields.

  6. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.

  7. Gravitational instanton - Wikipedia

    en.wikipedia.org/wiki/Gravitational_instanton

    A four-dimensional Ricci-flat Kähler manifold has anti-self-dual Riemann tensor with respect to the complex orientation. Consequently, a simply-connected anti-self-dual gravitational instanton is a four-dimensional complete hyperkähler manifold. Gravitational instantons are analogous to self-dual Yang–Mills instantons.

  8. Four-gradient - Wikipedia

    en.wikipedia.org/wiki/Four-gradient

    In differential geometry, the four-gradient (or 4-gradient) is the four-vector analogue of the gradient from vector calculus. In special relativity and in quantum mechanics , the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors .

  9. Four-current - Wikipedia

    en.wikipedia.org/wiki/Four-current

    In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three ...