Search results
Results from the WOW.Com Content Network
In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options.Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting, which in general does not exist for the BOPM.
The technique applied then, is (1) to generate a large number of possible, but random, price paths for the underlying (or underlyings) via simulation, and (2) to then calculate the associated exercise value (i.e. "payoff") of the option for each path. (3) These payoffs are then averaged and (4) discounted to today.
The simplest lattice model is the binomial options pricing model; [7] the standard ("canonical" [8]) method is that proposed by Cox, Ross and Rubinstein (CRR) in 1979; see diagram for formulae. Over 20 other methods have been developed, [9] with each "derived under a variety of assumptions" as regards the development of the underlying's price. [4]
Binomial regression models are essentially the same as binary choice models, one type of discrete choice model: the primary difference is in the theoretical motivation (see comparison). In machine learning , binomial regression is considered a special case of probabilistic classification , and thus a generalization of binary classification .
It is a one-factor model; that is, a single stochastic factor—the short rate—determines the future evolution of all interest rates. It was the first model to combine the mean-reverting behaviour of the short rate with the log-normal distribution, [1] and is still widely used. [2] [3]
In financial mathematics, the Ho-Lee model is a short-rate model widely used in the pricing of bond options, swaptions and other interest rate derivatives, and in modeling future interest rates. [1]: 381 It was developed in 1986 by Thomas Ho [2] and Sang Bin Lee. [3] Under this model, the short rate follows a normal process:
In probability theory and statistics, the negative multinomial distribution is a generalization of the negative binomial distribution (NB(x 0, p)) to more than two outcomes. [ 1 ] As with the univariate negative binomial distribution, if the parameter x 0 {\displaystyle x_{0}} is a positive integer, the negative multinomial distribution has an ...
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).