Search results
Results from the WOW.Com Content Network
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.
There are two closely related variants of the Erdős–Rényi random graph model. A graph generated by the binomial model of Erdős and Rényi (p = 0.01) In the (,) model, a graph is chosen uniformly at random from the collection of all graphs which have nodes and edges. The nodes are considered to be labeled, meaning that graphs obtained from ...
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
The Rado graph, as numbered by Ackermann (1937) and Rado (1964).. In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed (with probability one) by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge.
A random r-regular graph is a graph selected from ,, which denotes the probability space of all r-regular graphs on vertices, where < and is even. [1] It is therefore a particular kind of random graph, but the regularity restriction significantly alters the properties that will hold, since most graphs are not regular.
This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...
It can be shown that such a graph exists for any g and k, and the proof is reasonably simple. Let n be very large and consider a random graph G on n vertices, where every edge in G exists with probability p = n 1/g −1. We show that with positive probability, G satisfies the following two properties: Property 1.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...