enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    A smaller fraction (about four per million) of free neutrons decay in so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but the electron fails to gain the 13.6 eV necessary energy to escape the proton (the ionization energy of hydrogen), and therefore simply remains bound to it, forming a ...

  3. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    A neutron in free state is an unstable particle, with a half-life around ten minutes. It undergoes β− decay (a type of radioactive decay) by turning into a proton while emitting an electron and an electron antineutrino. This reaction can occur because the mass of the neutron is slightly greater than that of the proton.

  4. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides —which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a ...

  5. Discovery of the neutron - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_the_neutron

    The discoveries of the neutron and positron in 1932 were the start of the discoveries of many new particles. Muons were discovered in 1936. Pions and kaons were discovered in 1947, while lambda particles were discovered in 1950. Throughout the 1950s and 1960s, a large number of particles called hadrons were discovered.

  6. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons ...

  7. Neutronium - Wikipedia

    en.wikipedia.org/wiki/Neutronium

    Neutronium (or neutrium, [1] or neutrite [2]) is a hypothetical substance made purely of neutrons.The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the hypothetical "element of atomic number zero" (with zero protons in its nucleus) that he placed at the head of the periodic table (denoted by -).

  8. Alpha particle - Wikipedia

    en.wikipedia.org/wiki/Alpha_particle

    Alpha particle. Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. [5] They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek ...

  9. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...