enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Apparent viscosity - Wikipedia

    en.wikipedia.org/wiki/Apparent_viscosity

    A single viscosity measurement at a constant speed in a typical viscometer is a measurement of the instrument viscosity of a fluid (not the apparent viscosity). In the case of non-Newtonian fluids, measurement of apparent viscosity without knowledge of the shear rate is of limited value: the measurement cannot be compared to other measurements if the speed and geometry of the two instruments ...

  3. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    Viscosity models for mixtures. The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move ...

  4. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    e. The viscosity of a fluid is a measure of its resistance to deformation at a given rate. [1] For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. [2] Viscosity is defined scientifically as a force multiplied by a time divided by an area.

  5. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    h is the distance between the two parallel plates, measured in meters. Or: For the simple shear case, it is just a gradient of velocity in a flowing material. The SI unit of measurement for shear rate is s −1, expressed as "reciprocal seconds" or "inverse seconds". [1] However, when modelling fluids in 3D, it is common to consider a scalar ...

  6. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    Power-law fluid. In continuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid (time-independent non-Newtonian fluid) for which the shear stress, τ, is given by. where: K is the flow consistency index (SI units Pa·s n), ∂ u / ∂ y⁠ is the shear rate or the velocity gradient ...

  7. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Darcy–Weisbach equation. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  8. Marsh funnel - Wikipedia

    en.wikipedia.org/wiki/Marsh_funnel

    where μ = effective viscosity in centipoise ρ = density in g/cm 3 t = quart funnel time in seconds For example, a mud of funnel time 40 seconds and density 1.1 g/cm 3 has an effective viscosity of about 16.5 cP. For the range of times of typical muds above, the shear rate in the Marsh funnel is about 2000 s −1. [4]

  9. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    Herschel–Bulkley fluid. The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress .