enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary (Couette flow), is defined by. where: γ ˙ {\displaystyle {\dot {\gamma }}} is the shear rate, measured in reciprocal seconds; v is the velocity of the moving plate, measured in meters per second; h is the distance ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  4. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...

  5. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    The strain rate is a concept of materials science and continuum mechanics that plays an essential role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, the viscous stress is a linear function of the rate of strain, defined by two coefficients, one relating to the expansion rate (the bulk viscosity ...

  6. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    The relevant information is the area of the material being sheared, i.e. the area across which the shearing action takes place, and the shear strength of the material. A round bar of steel is used as an example. The shear strength is calculated from the tensile strength using a factor which relates the two strengths.

  7. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    Herschel–Bulkley fluid. The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress .

  8. Shear velocity - Wikipedia

    en.wikipedia.org/wiki/Shear_velocity

    Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of the mean flow velocity. For river base case, the shear velocity can be calculated by Manning's equation.

  9. Simple shear - Wikipedia

    en.wikipedia.org/wiki/Simple_shear

    The mathematical model representing simple shear is a shear mapping restricted to the physical limits. It is an elementary linear transformation represented by a matrix. The model may represent laminar flow velocity at varying depths of a long channel with constant cross-section. Limited shear deformation is also used in vibration control, for ...