Search results
Results from the WOW.Com Content Network
Natural iron (26 Fe) consists of four stable isotopes: 5.845% 54 Fe (possibly radioactive with half-life > 4.4 × 10 20 years), [4] 91.754% 56 Fe, 2.119% 57 Fe and 0.286% 58 Fe. There are 28 known radioisotopes and 8 nuclear isomers, the most stable of which are 60 Fe (half-life 2.6 million years) and 55 Fe (half-life 2.7 years).
The rarer isotopes nickel-62 and iron-58, which both have higher binding energies, are not shown. Iron-56 (56 Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei. [1]
Iron is a chemical element; it has the symbol Fe (from Latin ferrum 'iron') and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table . It is, by mass, the most common element on Earth , forming much of Earth's outer and inner core .
The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. [1] Overall, there are 251 known stable isotopes in ...
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.
Iron-55 (55 Fe) is a radioactive isotope of iron with a nucleus containing 26 protons and 29 neutrons. It decays by electron capture to manganese-55 and this process has a half-life of 2.737 years. The emitted X-rays can be used as an X-ray source for various scientific analysis methods, such as X-ray diffraction .
It contains a table of main isotopes and eventually the standard atomic weight. This template is reused in {{Infobox <element>}} as a child Infobox (|child=yes). As of Jan 2023, a 'Main isotope' is conforming MOS:MAINISOTOPE (under construction, see WP:ELEMENTS What is a "Main_isotope"?) Each isotope has its own row, with decay modes:
Isotopes of an element are distinguished by mass number (total protons and neutrons), with this number combined with the element's symbol. IUPAC prefers that isotope symbols be written in superscript notation when practical, for example 12 C and 235 U. However, other notations, such as carbon-12 and uranium-235, or C-12 and U-235, are also used.