Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Sub-GeV dark matter has been used to explain the positron excess in the Galactic Center observed by INTEGRAL, excess gamma rays from the Galactic Center [7] and extragalactic sources. It has also been suggested that light dark matter may explain a small discrepancy in the measured value of the fine structure constant in different experiments. [8]
The founding principle of direct dark matter detection is that since dark matter is known to exist in the local universe, as the Earth, Solar System, and the Milky Way Galaxy carve out a path through the universe they must intercept dark matter, regardless of what form it takes. Direct detection of dark matter faces several practical challenges.
A MAssive Compact Halo Object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galactic halos.A MACHO is a body that emits little or no radiation and drifts through interstellar space unassociated with any planetary system (and may or may not be composed of normal baryonic matter).
Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is characterized by dark matter not interacting with electromagnetic radiation , hence making it dark and rendering it undetectable via conventional instruments in physics.
Microbial dark matter is analogous to the dark matter of physics and cosmology due to its elusiveness in research and importance to our understanding of biological diversity. Microbial dark matter can be found ubiquitously and abundantly across multiple ecosystems, but remains difficult to study due to difficulties in detecting and culturing ...
As "dark matter", baryonic dark matter is undetectable by its emitted radiation, but its presence can be inferred from gravitational effects on visible matter. This form of dark matter is composed of "baryons", heavy subatomic particles such as protons and neutrons and combinations of these, including non-emitting ordinary atoms.
Dark radiation (also dark electromagnetism) [1] is a postulated type of radiation that mediates interactions of dark matter.. By analogy to the way photons mediate electromagnetic interactions between particles in the Standard Model (called baryonic matter in cosmology), dark radiation is proposed to mediate interactions between dark matter particles. [1]