enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_theorem

    The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...

  3. Endogeneity (econometrics) - Wikipedia

    en.wikipedia.org/wiki/Endogeneity_(econometrics)

    [a] [2] Ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. [3]

  4. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    A simple, very important example of a generalized linear model (also an example of a general linear model) is linear regression. In linear regression, the use of the least-squares estimator is justified by the Gauss–Markov theorem, which does not assume that the distribution is normal.

  5. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    The model is estimated by OLS or another consistent (but inefficient) estimator, and the residuals are used to build a consistent estimator of the errors covariance matrix (to do so, one often needs to examine the model adding additional constraints; for example, if the errors follow a time series process, a statistician generally needs some ...

  6. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    The Gauss–Markov theorem shows that, when this is so, ^ is a best linear unbiased estimator . If, however, the measurements are uncorrelated but have different uncertainties, a modified approach might be adopted.

  7. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    Best linear unbiased predictions" (BLUPs) of random effects are similar to best linear unbiased estimates (BLUEs) (see Gauss–Markov theorem) of fixed effects. The distinction arises because it is conventional to talk about estimating fixed effects but about predicting random effects, but the two terms are otherwise equivalent. (This is a bit ...

  8. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  9. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Under these assumptions the Tikhonov-regularized solution is the most probable solution given the data and the a priori distribution of , according to Bayes' theorem. [34] If the assumption of normality is replaced by assumptions of homoscedasticity and uncorrelatedness of errors, and if one still assumes zero mean, then the Gauss–Markov ...