enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_theorem

    The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...

  3. Endogeneity (econometrics) - Wikipedia

    en.wikipedia.org/wiki/Endogeneity_(econometrics)

    [a] [2] Ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. [3]

  4. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    A simple, very important example of a generalized linear model (also an example of a general linear model) is linear regression. In linear regression, the use of the least-squares estimator is justified by the Gauss–Markov theorem, which does not assume that the distribution is normal.

  5. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    The Gauss–Markov theorem shows that, when this is so, ^ is a best linear unbiased estimator . If, however, the measurements are uncorrelated but have different uncertainties, a modified approach might be adopted.

  6. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    This transformation effectively standardizes the scale of and de-correlates the errors. When OLS is used on data with homoscedastic errors, the Gauss–Markov theorem applies, so the GLS estimate is the best linear unbiased estimator for .

  7. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  8. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    Best linear unbiased predictions" (BLUPs) of random effects are similar to best linear unbiased estimates (BLUEs) (see Gauss–Markov theorem) of fixed effects. The distinction arises because it is conventional to talk about estimating fixed effects but about predicting random effects, but the two terms are otherwise equivalent. (This is a bit ...

  9. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    One of the assumptions of the classical linear regression model is that there is no heteroscedasticity. Breaking this assumption means that the Gauss–Markov theorem does not apply, meaning that OLS estimators are not the Best Linear Unbiased Estimators (BLUE) and their variance is