Search results
Results from the WOW.Com Content Network
Similarly, an integer program (consisting of a collection of linear constraints and a linear objective function, as in a linear program, but with the additional restriction that the variables must take on only integer values) satisfies both the monotonicity and locality properties of an LP-type problem, with the same general position ...
In Smale's words, the third version of the problem "is the main unsolved problem of linear programming theory." While algorithms exist to solve linear programming in weakly polynomial time, such as the ellipsoid methods and interior-point techniques, no algorithms have yet been found that allow strongly polynomial-time performance in the number ...
The problem is that, while virtual functions are dispatched dynamically in C++, function overloading is done statically. The problem described above can be resolved by simulating double dispatch, for example by using a visitor pattern. Suppose the existing code is extended so that both SpaceShip and ApolloSpacecraft are given the function
respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.
This was an open problem until 2007, when an efficient algorithm based on dynamic programming was published. [14] The minimum number of knife changes problem (for the one-dimensional problem): this is concerned with sequencing and permuting the patterns so as to minimise the number of times the slitting knives have to be moved.
The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. The problem comes up often in discussions of computability since it demonstrates that some functions are mathematically definable but not computable.
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .
an infeasible problem is one for which no set of values for the choice variables satisfies all the constraints. That is, the constraints are mutually contradictory, and no solution exists; the feasible set is the empty set. unbounded problem is a feasible problem for which the objective function can be made to be better than any given finite ...