enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Photoelectric_effect

    The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, solid state, and quantum chemistry to draw inferences about the properties of atoms, molecules and ...

  3. Stoletov's law - Wikipedia

    en.wikipedia.org/wiki/Stoletov's_law

    Stoletov's law (or the first law of photoeffect) for photoelectric effect establishes the direct proportionality between the intensity of electromagnetic radiation acting on a metallic surface and the photocurrent induced by this radiation.

  4. Thomson scattering - Wikipedia

    en.wikipedia.org/wiki/Thomson_scattering

    Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.

  5. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The energy content of this volume element at 5 km from the station is 2.1 × 10 −10 × 0.109 = 2.3 × 10 −11 J, which amounts to 3.4 × 10 14 photons per (). Since 3.4 × 10 14 > 1, quantum effects do not play a role. The waves emitted by this station are well-described by the classical limit and quantum mechanics is not needed.

  6. Photoemission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Photoemission_electron...

    Photoelectric effect Schematic illustration of the photoemission process. Using Einstein's method, the following equations are used: energy of photon = energy needed to remove an electron + kinetic energy of the emitted electron = + where h is the Planck constant;

  7. Photoelectrochemical process - Wikipedia

    en.wikipedia.org/wiki/Photoelectrochemical_process

    This formula defines the photoelectric effect. Not every photon which encounters an atom or ion will photoionize it. The probability of photoionization is related to the photoionization cross-section, which depends on the energy of the photon and the target being considered. For photon energies below the ionization threshold, the ...

  8. X-ray photoelectron spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_photoelectron...

    XPS physics - the photoelectric effect.. Because the energy of an X-ray with particular wavelength is known (for Al K α X-rays, E photon = 1486.7 eV), and because the emitted electrons' kinetic energies are measured, the electron binding energy of each of the emitted electrons can be determined by using the photoelectric effect equation,

  9. Photoemission spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Photoemission_spectroscopy

    The physics behind the PES technique is an application of the photoelectric effect. The sample is exposed to a beam of UV or XUV light inducing photoelectric ionization. The energies of the emitted photoelectrons are characteristic of their original electronic states, and depend also on vibrational state and rotational level.