Search results
Results from the WOW.Com Content Network
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
where v is the speed of the wave (c in a vacuum or less in other media), f is the frequency and λ is the wavelength. As waves cross boundaries between different media, their speeds change but their frequencies remain constant. Electromagnetic waves in free space must be solutions of Maxwell's electromagnetic wave equation. Two main classes of ...
An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).
X-rays are electromagnetic waves with a wavelength less than about 10 −9 m (greater than 3 × 10 17 Hz and 1240 eV). A smaller wavelength corresponds to a higher energy according to the equation E = h c/λ. (E is Energy; h is the Planck constant; c is the speed of light; λ is wavelength.) When an X-ray photon collides with an atom, the atom ...
Dispersion may be caused either by geometric boundary conditions (waveguides, shallow water) or by interaction of the waves with the transmitting medium. Elementary particles , considered as matter waves , have a nontrivial dispersion relation, even in the absence of geometric constraints and other media.
At 38 nanometers wavelength for electromagnetic radiation, 33 eV is close to the energy at the conventional 10 nm wavelength transition between extreme ultraviolet and X-ray radiation, which occurs at about 125 eV. Thus, X-ray radiation is always ionizing, but only extreme-ultraviolet radiation can be considered ionizing under all definitions.
Radio waves are more widely used for communication than other electromagnetic waves mainly because of their desirable propagation properties, stemming from their large wavelength. [12] Radio waves have the ability to pass through the atmosphere in any weather, foliage, and through most building materials. By diffraction, longer wavelengths can ...
Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.