Search results
Results from the WOW.Com Content Network
It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it were a continuous distribution. The Kent distribution on the two-dimensional sphere.
An absolutely continuous probability distribution is a probability distribution on the real numbers with uncountably many possible values, such as a whole interval in the real line, and where the probability of any event can be expressed as an integral. [19]
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.
The discrete-stable distributions have been used in numerous fields, in particular in scale-free networks such as the internet, social networks [2] or even semantic networks. [3] Both the discrete and continuous classes of stable distribution have properties such as infinite divisibility, power law tails and unimodality. The most well-known ...
In probability and statistics, the parabolic fractal distribution is a type of discrete probability distribution in which the logarithm of the frequency or size of entities in a population is a quadratic polynomial of the logarithm of the rank (with the largest example having rank 1). This can markedly improve the fit over a simple power-law ...
The universal law of radioactive decay, which describes the time until a given radioactive particle decays, is a real-life example of memorylessness. An often used (theoretical) example of memorylessness in queueing theory is the time a storekeeper must wait before the arrival of the next customer.
In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.