Search results
Results from the WOW.Com Content Network
It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it were a continuous distribution. The Kent distribution on the two-dimensional sphere.
English: From top to bottom, the cumulative distribution function of a discrete probability distribution, continuous probability distribution, and a distribution which has both a continuous part and a discrete part. Cumulative distribution functions are examples of càdlàg functions.
An absolutely continuous probability distribution is a probability distribution on the real numbers with uncountably many possible values, such as a whole interval in the real line, and where the probability of any event can be expressed as an integral. [19]
Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]