Search results
Results from the WOW.Com Content Network
In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.
Complex numbers thus form an algebraically closed field, where any polynomial equation has a root. Many mathematicians contributed to the development of complex numbers. The rules for addition, subtraction, multiplication, and root extraction of complex numbers were developed by the Italian mathematician Rafael Bombelli. [24]
Similarly, any polar coordinate is identical to the coordinate with the negative radial component and the opposite direction (adding 180° to the polar angle). Therefore, the same point ( r , φ ) can be expressed with an infinite number of different polar coordinates ( r , φ + n × 360°) and (− r , φ + 180° + n × 360°) = (− r , φ ...
φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π. Many texts write φ = tan −1 y / x instead of φ = atan2( y , x ) , but the first equation needs adjustment when x ≤ 0 .
The polar form of a nonzero complex number = + is =, where = | | = + is the absolute value of , and is its argument. The absolute value is real and positive. The absolute value is real and positive. The argument is defined up to addition of an integer multiple of 2 π .
As a complex number, i can be represented in rectangular form as 0 + 1i, with a zero real component and a unit imaginary component. In polar form, i can be represented as 1 × e πi /2 (or just e πi /2), with an absolute value (or magnitude) of 1 and an argument (or angle) of radians.
Some graphing calculators have a computer algebra system (CAS), which means that they are capable of producing symbolic results. These calculators can manipulate algebraic expressions, performing operations such as factor, expand, and simplify. In addition, they can give answers in exact form without numerical approximations. [6]