Search results
Results from the WOW.Com Content Network
A sol is a colloidal suspension made out of tiny solid particles [1] in a continuous liquid medium. Sols are stable, so that they do not settle down when left undisturbed, and exhibit the Tyndall effect, which is the scattering of light by the particles in the colloid. The size of the particles can vary from 1 nm - 100 nm.
When lyophilic sols are added to lyophobic sols, depending on their sizes, either lyophobic sol is adsorbed in the surface of lyophilic sol or lyophilic sol is adsorbed on the surface of lyophobic sol. The layer of the protective colloid prevents direct collision between the hydrophobic colloidal particles and thus prevents coagulation. [1]
The coagulation of gold sol results in an increase in particle size, indicated by a colour change from red to blue or purple. The higher the gold number, the lower the protective power of the colloid, because a greater amount of colloid is required to prevent coagulation. The gold number of some colloids are given below.
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.
Dissolution of small crystals or sol particles and the redeposition of the dissolved species on the surfaces of larger crystals or sol particles was first described by Wilhelm Ostwald in 1896. [4] [5] For colloidal systems, Ostwald ripening is also found in water-in-oil emulsions, while flocculation is found in oil-in-water emulsions. [6]
A colloid is stable if the interaction energy due to attractive forces between the colloidal particles is less than kT, where k is the Boltzmann constant and T is the absolute temperature. If this is the case, then the colloidal particles will repel or only weakly attract each other, and the substance will remain a suspension.
In their paper, they give many more examples of colloid systems that flocculate into an emulsoid state, either by varying the temperature, by adding salts, co-solvents or by mixing together two oppositely charged polymer colloids, and illustrate their observations with the first microscope pictures of coacervate droplets.
When heavy metals or radionuclides form their own pure colloids, the term "Eigencolloid" is used to designate pure phases, e.g., Tc(OH) 4, Th(OH) 4, U(OH) 4, Am(OH) 3. Colloids have been suspected for the long range transport of plutonium on the Nevada Nuclear Test Site. They have been the subject of detailed studies for many years.